
C++ Toolkit Book Working with Makefiles

5-1

5. Working with Makefiles
Created: April 1, 2003
Updated: September 16, 2003

Overview
The overview for this chapter consists of the following topics:

• Introduction

• Chapter Outline

Introduction
Building executables and libraries for a large, integrated set of software tools like the C++ Toolkit, and
doing so consistently on different platforms and architectures, is a daunting task. Therefore, the Toolkit
developers have expended considerable effort to design a build system based upon the make utility as
controlled by makefiles. While it is of course possible to write one's own Toolkit makefile from scratch, it is
seldom desirable. To take advantage of Toolkit experience, wisdom and alchemy to help avoid often
inscrutable compilation issues:

we strongly advise users to work with the Toolkit's make system

With minimal manual editing (and after invoking the configure script in your build tree) the build system
adapts to your environment, compiler options, defines all relevant makefile macros and targers, allows for
recursive builds of the entire Toolkit and targetted builds of single modules, and handles many other details
that can confound manual builds.

Chapter Outline
The following is an outline of the topics presented in this chapter:

• Major Makefiles

• Makefile Hierarchy

• Meta-Makefiles

• Makefile.in Meta Files

• Expendable Projects

C++ Toolkit Book Working with Makefiles

5-2

• Project Makefiles

• List of optional packages, features and projects

• Standard Build Targets

• Meta-Makefile Targets

• Makefile Targets

• Makefile Macros and Makefile.mk

• Example Makefiles

Major Makefiles
Before describing the make system in detail, we list the major types of makefiles employed by the
Toolkit:

• meta-makefiles These files exist for each project and tie together project in the Toolkit
hierarchy, defining those applications and libraries a project is responsible for (possibly
recursively) building.

• Generic makefile Templates (Makefile*.in) The configure script processes these files from
the src hierarchy to substitute for the special tags "@some_name@" and make other
specializations required for a given project. Note that meta-makefiles are typically derived from
such templates.

• Customized makefiles (Makefile.*.[lib|app]) For each library or application, this file gives
specific targets, compiler flags, and other project-specific build instructions. These files appear
in the src hierarchy.

• Configured makefiles (Makefile) A makefile generated by configure for each project and
sub-project and placed in the appropriate location in the build tree ready for use will be called a
'configured makefile'. Note that meta-makefiles in the build tree may be considered
'configured'.

Makefile Hierarchy
All Toolkit makefiles reside in either the src directory as templates or customized files, or in the
appropriate configured form in each of your <builddir> hierarchies as illustrated in Figure 1

C++ Toolkit Book Working with Makefiles

5-3

Figure 1: Makefile Hierarchy

Most of the files listed in Figure 1 are templates from the src directory, with each correspond-
ing configured makefile at the top of the build tree. Of these, <builddir>/Makefile can be consid-
ered the master makefile in that it can recursively build the entire Toolkit. The role of each top-
level makefile templates is summarized as follows:

• Makefile.in -- makefile to perform a recursive build in all project subdirectories

• Makefile.meta.in -- included by all makefiles that provide both local and recursive builds

• Makefile.mk.in -- included by all makefiles; sets a lot of configuration variables

• Makefile.lib.in -- included by all makefiles that perform a "standard" library build, when
building only static libraries.

• Makefile.dll.in -- included by all makefiles that perform a "standard" library build, when
building only shared libraries.

• Makefile.both.in -- included by all makefiles that perform a "standard" library build, when
building both static and shared libraries.

• Makefile.lib.tmpl.in -- serves as a template for the project customized makefiles (Make-
file.*.lib[.in]) that perform a "standard" library build

• Makefile.app.in -- included by all makefiles that perform a "standard" application build

• Makefile.lib.tmpl.in -- serves as a template for the project customized makefiles (Make-
file.*.app[.in]) that perform a "standard" application build

• Makefile.rules.in, Makefile.rules_with_autodep.in -- instructions for building object files;
included by most other makefiles

C++ Toolkit Book Working with Makefiles

5-4

The project-specific portion of the makefile hierarchy is represented in the figure by the meta-
makefile template c++/src/myProj/Makefile.in, the customized makefilec++/src/myProj/Makefile.
myProj.[app|lib] (not shown), and the configured makefilec++/myBuild/build/myProj/Makefile. In
fact, every project and sub-project in the Toolkit has analogous files specialized to its project; in
most circumstances, every new or user project should emulate this file structure to be compatible
with the make system.

Meta-Makefiles
A typical meta-makefile template(e.g. Makefile.in in your foo/c++/src/bar_proj/ dir) looks like this:

Supply Makefile.bar_u1, Makefile.bar_u2 ...

USR_PROJ = bar_u1 bar_u2 ...

Supply Makefile.bar_l1.lib, Makefile.bar_l2.lib ...

LIB_PROJ = bar_l1 bar_l2 ...

Supply Makefile.bar_a1.app, Makefile.bar_a2.app ...

APP_PROJ = bar_a1 bar_l2 ...

Subprojects

SUB_PROJ = app sub_proj1 sub_proj2

srcdir = @srcdir@
include @builddir@/Makefile.meta

This template separately specifies instructions for user, library and application projects, along with
a set of three sub-projects that can be made. The mandatory final two lines "srcdir =
@srcdir@ ; include @builddir@/Makefile.meta" define the standard build targets.

The following topics are discussed in the subsections that follow:

• Makefile.in Meta Files

• Expendable Projects

Makefile.in Meta Files
The Makefile.in meta file in the project's source directory defines a kind of road map that will be
used by the configure script to generate a makefile (Makefile) in the corresponding directory of
the build tree. Makefile.in does not participate in the actual execution of make, but rather, defines
what will happen at that time by directing the configure script in the creation of the Makefile that
will be executed (see also the description of Makefile targets below).

The meta-makefile myProj/Makefile.in should define at least one of the following macros:

C++ Toolkit Book Working with Makefiles

5-5

• USR_PROJ (optional) - a list of names for user-defined makefiles. This macro is provided

for the usage of ordinary stand-alone makefiles which do not utilize the make commands
contained in additional makefiles in the top-level build directory. Each p_i listed in
USR_PROJ = p_1 ... p_N must have a corresponding Makefile.p_i in the project's

source directory. When make is executed, the make directives contained in these files will
be executed directly to build the targets as specified.

• LIB_PROJ (optional) - a list of names for library makefiles. For each library l_i listed in

LIB_PROJ = l_1 ... l_N, you must have created a corresponding project makefile

namedMakefile.l_i.lib in the project's source directory. When make is executed, these
library project makefiles will be used along with Makefile.lib and Makefile.lib.tmpl (located
in the top-level of the build tree) to build the specified libraries.

• ASN_PROJ (optional) is like LIB_PROJ, with one additional feature: Any projects listed

there will be interpreted as the names of ASN.1 module specifications to be processed by
datatool.

• APP_PROJ (optional) - a list of names for application makefiles. Similarly, each application

(p1, p2, ..., pN) listed under APP_PROJ must have a corresponding project makefile named

Makefile.p*.app in the project's source directory. When make is executed, these applica-
tion project makefiles will be used along with Makefile.app and Makefile.app.tmpl to build
the specified executables.

• SUB_PROJ (optional) - a list of names for subproject directories (used on recursive makes).

The SUB_PROJ macro is used to recursively define make targets; items listed here define

the subdirectories rooted in the project's source directory where make should also be exe-
cuted.

Some additional meta-makefile macros (listed in Table 1) exist to specify various directory
paths that make needs to know. The "@"-delimited tokens are substituted during configuration
based on your environment and any command-line options passed to configure.

Table 1. Path Specification Makefile Macros

Macro Source Synopsis

top_srcdir @top_srcdir@ Path to the whole NCBI C++ pack-
age

srcdir @srcdir@ Directory in the source tree that
corresponds to the directory (./)
in the build tree where the build
is currently going on

includedir @includedir@ Top include directory in the source
tree

build_root @build_root@ Path to the whole build tree

C++ Toolkit Book Working with Makefiles

5-6

Macro Source Synopsis

builddir @builddir@ Top build directory inside the build
tree

incdir @incdir@ Top include directory inside the
build tree

libdir @libdir@ Libraries built inside the build tree
bindir @bindir@ Executables built inside the build

tree
status_dir @status_dir@ Configuration status files

Expendable Projects
By default, failure of any project will cause make to exit immediately. Although this behavior can
save a lot of time, it is not always desirable. One way to avoid it is to run make -k rather than

make, but then major problems affecting a large portion of the build will still waste a lot of time.

Consequently, the toolkit's build system supports an alternative approach:meta-makefiles can
define expendable projects which should be built if possible but are allowed to fail without inter-
rupting the build. The way to do this is to list such projects in EXPENDABLE_*_PROJ rather than

*_PROJ.

Project Makefiles
When beginning a new project, the new_project.sh shell script will generate an initial make-
fileMakefile.<project_name>_app that you can modify as needed. In addition, a working sample
application can also be checked out to experiment with or as an alternate template.

The import_projects.sh script is useful for working on existing Toolkit projects without need-
ing to build the whole Toolkit. In this case things are particularly straightforward as the project will
be retrieved complete with its makefile already configured as Makefile.<project_name>_[app|lib].
(Note that there is an underscore in the name, not a period as in the similarly-named customiz-
able makefile from which the configured file is derived.)

If you are working outside of the source tree: In this scenario you are only linking to the
Toolkit libraries and will not need to run the configure script, so a Makefile.in template meta-
makefile is not required. Some of the typical edits required for the customized makefile are shown
in the programming manual.

If you are working within the source tree or subtree: Project subdirectories that do not
contain any *.in files are ignored by the configure script. Therefore, you will now also need to
create a meta-makefile for the newly created project before configuring your build directory to
include the new project.

Several examples are detailed on the "Starting New Projects" page.

C++ Toolkit Book Working with Makefiles

5-7

List of optional packages, features and projects
Table 2 displays the keywords you can list in REQUIRES in a customized application or library
makefile, along with the corresponding configure options:

Table 2. Optional Packages, Features, and Projects

Keyword Optional... Configure option(s)

FreeTDS FreeTDS libraries --without-ftds, --with-ftds=DIR
Fast-CGI Fast-CGI library --without-fastcgi
FLTK the Fast Light ToolKit --without-fltk, --with-fltk=DIR
wxWindows wxWindows --without-wxwin, --with-wxwin=DIR
C-Toolkit NCBI C Toolkit --without-ncbi-c
SSSDB NCBI SSS DB library --without-sssdb, --without-sss
SSSUTILS NCBI SSS UTILS library --without-sssutils, --without-sss
GEO NCBI GEO libraries --without-geo
SP SP libraries --without-sp
PubMed NCBI PubMed libraries --without-pubmed

serial ASN.1/XML serialization library and
datatool

--without-serial

ctools projects based on the NCBI C toolkit --without-ctools
gui projects that use the wxWindows

GUI package
--without-gui

objects libraries to serialize ASN.1/XML
objects

--with-objects

app standalone applications like
ID1_FETCH

--with-app

internal all internal projects --with-internal
local_lbsm IPC with locally running LBSMD --without-local-lbsm

Standard Build Targets
The following topics are discussed in this section:

• Meta-Makefile Targets

• Makefile Targets

C++ Toolkit Book Working with Makefiles

5-8

Meta-Makefile Targets
The mandatory lines from the meta-makefile example above,

srcdir = @srcdir@
include @builddir@/Makefile.meta

provide the build rules for the following standard meta-makefile targets:

• all:

• run "make -f {Makefile.*} all" for the makefiles with the suffixes listed in

macro USR_PROJ:

make -f Makefile.bar_u1 all
make -f Makefile.bar_u2 all
......

• build libraries using attributes defined in the customized makefilesMakefile.*.lib with
the suffixes listed in macro LIB_PROJ

• build application(s) using attributes defined in the customized makefilesMakefile.*.
app with the suffixes listed in macro APP_PROJ

• all_r -- first make target all, then run "make all_r" in all subdirectories enlisted in

$(SUB_PROJ):

cd bar_test && make -f Makefile all_r
cd bar_sub_proj1 && make -f Makefile all_r
......

• clean, clean_r -- run just the same makefiles but with targets clean and clean_r (rather
than all and all_r), respectively

• purge, purge_r --with targets purge and purge_r, respectively

Makefile Targets
The standard build targets for Toolkit makefiles are all, clean and purge. Recall that recursive
versions of these targets exist for meta-makefiles.

• all -- compile the object modules specified in the "$(OBJ)" macro, and use them to build

the library "$(LIB)" or the application "$(APP)"; then copy the resultant [lib|app] to the

[libdir|bindir] directory, respectively

• clean -- remove all object modules and libs/apps that have been built by all

C++ Toolkit Book Working with Makefiles

5-9

• purge -- do clean, and then remove the copy of the [libs|apps] from the [libdir|bindir] direc-
tory.

The customized makefiles do not distinguish between recursive (all_r, clean_r, purge_r) and
non-recursive (all, clean, purge) targets -- because the recursion and multiple build is entirely up
to the meta-makefiles.

Makefile Macros and Makefile.mk
There is a wide assortment of configured tools, flags, third party packages and paths (see above).
They can be specified for the whole build tree with the appropriate entry in Makefile.mk, which is
silently included at the very beginning of the customized makefiles used to build libraries and
applications.

Many makefile macros are supplied with defaults ORIG_* in Makefile.mk. See the list of

ORIG_%20 macros, and all others currently defined, in the Makefile.mk.in template for details.

One should not override these defaults in normal use, but add your own flags to them as needed
in the corresponding working macro; e.g., set CXX = $(ORIG_CXX) -DFOO_BAR.

Makefile.mk defines the following makefile macros obtained during the configuration process
for flags (see Table 3), system and third-party packages (see Table 4) and development tools
(see Table 5).

Table 3. Flags

Macro Source Synopsis

CFLAGS $CFLAGS C compiler flags
FAST_CFLAGS $FAST_CFLAGS (*) C compiler flags to generate

faster code
CXXFLAGS $CXXFLAGS C++ compiler flags
FAST_CXXFLAGS $FAST_CXXFLAGS (*) C++ compiler flags to gener-

ate faster code
CPPFLAGS $CPPFLAGS C/C++ preprocessor flags
DEPFLAGS $DEPFLAGS Flags for file dependency lists
LDFLAGS $LDFLAGS Linker flags
LIB_OR_DLL @LIB_OR_DLL@ Specify whether to build a library

as static or dynamic
STATIC @STATIC@ Library suffix to force static link-

age (see example)

(*) The values of user-specified environment variables $FAST_CFLAGS, $FAST_CXXFLAGS
will substitute the regular optimization flag -O (or -O2, etc.). For example, if in the environment:
$FAST_CXXFLAGS=-fast -speedy and $CXXFLAGS=-warn -O3 -std, then in makefile:

$(FAST_CXXFLAGS)=-warn -fast -speedy -std.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/Makefile.mk.in#L86
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/Makefile.mk.in

C++ Toolkit Book Working with Makefiles

5-10

Table 4. System and third-party packages

Macro Source Synopsis

LIBS $LIBS Default libraries to link with
PRE_LIBS $PRE_LIBS ??? Default libraries to link

with first
THREAD_LIBS $THREAD_LIBS Thread library (system)
NETWORK_LIBS $NETWORK_LIBS Network library (system)
MATH_LIBS $MATH_LIBS Math library (system)
KSTAT_LIBS $KSTAT_LIBS KSTAT library (system)
RPCSVC_LIBS $RPCSVC_LIBS RPCSVC library (system)
SYBASE_INCLUDE $SYBASE_INCLUDE SYBASE headers
SYBASE_LIBS $SYBASE_LIBS SYBASE libraries
FASTCGI_INCLUDE $FASTCGI_INCLUDE Fast-CGI headers
FASTCGI_LIBS $FASTCGI_LIBS Fast-CGI libraries
NCBI_C_INCLUDE $NCBI_C_INCLUDE NCBI C toolkit headers
NCBI_C_LIBPATH $NCBI_C_LIBPATH Path to the NCBI C Toolkit

libraries
NCBI_C_ncbi $NCBI_C_ncbi NCBI C CoreLib
NCBI_SSS_INCLUDE $NCBI_SSS_INCLUDE NCBI SSS headers
NCBI_SSS_LIBPATH $NCBI_SSS_LIBPATH Path to NCBI SSS libraries
NCBI_PM_PATH $NCBI_PM_PATH Path to the PubMed pack-

age
ORBACUS_LIBPATH $ORBACUS_LIBPATH Path to the ORBacus

CORBA libraries
ORBACUS_INCLUDE $ORBACUS_LIBPATH Path to the ORBacus

CORBA headers

Table 5. Compiler, Linker, and other development Tools

Macro Source Synopsis

CC $CC C compiler
CXX $CXX C++ compiler
LINK $CXX Linker (C++-aware)
CPP $CPP C preprocessor
CXXCPP $CXXCPP C++ preprocessor
AR $AR Library archiver
STRIP $STRIP Tool to strip symbolic info from

binaries
RM rm -f Remove file(s)
RMDIR rm -rf Remove file(s) and directory(ies)

recursively
COPY cp -p Copy file (preserving the modifica-

tion time)

C++ Toolkit Book Working with Makefiles

5-11

Macro Source Synopsis

CC_FILTER @CC_FILTER@ Filters for the C compiler
CXX_FILTER @CXX_FILTER@ Filters for the C++ compiler
CHECK_ARG @CHECK_ARG@
LN_S @LN_S@ Make a symbolic link if possible;

otherwise, hard-link or copy
BINCOPY @BINCOPY@ Copy a library or an executable --

but only if it was changed

Example Makefiles
Below are links to examples of typical makefiles, complete with descriptions of their content.

• Inside the Tree

• An example meta-makefile and its associated project makefiles

• Library project makefile: Makefile.myProj.lib

• Application project makefile: Makefile.myProj.app

• Custom project makefile: Makefile.myProj

• New Projects and Outside the Tree

• Use Shell Scripts to Create Makefiles

• Customized makefile to build a library

• Customized makefile to build an application

• User-defined makefile to build... whatever

